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Abstract. We investigate the dynamics of out-of-plane (OP) vortices, in a 2-dimensional (2D) classi-
cal Heisenberg magnet with a weak anisotropy in the coupling of z-components of spins (easy plane
anisotropy), on square lattices, under the influence of a rotating in-plane (IP) magnetic field. Switching
of the z-component of magnetization of the vortex is studied in computer simulations as a function of
the magnetic field’s amplitude and frequency. The effects of the size and the anisotropy of the system
on the switching process are shown. An approximate dynamical equivalence of the system, in the bulk
limit, to another system with both IP and OP static fields in the rotating reference frame is demonstrated,
and qualitatively the same switching and critical behavior is obtained in computer simulations for both
systems. We briefly discuss the interplay between finite size effects (image vortices) and the applied field in
the dynamics of OP vortices. In the framework of a discrete reduced model of the vortex core we propose
a mechanism for switching the vortex polarization, which can account qualitatively for all our results. A
coupling between the IP movement (trajectories) of the vortex center and the OP core structure oscilla-
tions, due to the discreteness of the underlying lattice, is shown. A connection between this coupling and
our reduced model is made clear, through an analogy with a generalized Thiele equation.

PACS. 75.10.Hk Classical spin models – 75.30.Gw Magnetic anisotropy – 75.40.Mg Numerical simulation
studies

1 Introduction

The stability and dynamics of spin vortices in ferromag-
netic materials have received much attention during the
past decades, but nowadays is becoming even more attrac-
tive, from both the pure and applied science viewpoints.
On the one hand, very recently direct experimental ob-
servation of vortices or “curling” states, as stable micro-
magnetic states of small (submicron) magnetic particles
(dots), has been attained thanks to magnetic microscopy
techniques with enhanced resolution-magnetic force mi-
croscopy (MFM) and Lorentz transmission electron mi-
croscopy (LTEM). Notable MFM experiments on circular
nanoscale dots of Permalloy (Ni80Fe20) [1,2], and Co [2,3]
disposed in arrays over nanopatterned films, report im-
ages of vortex cores, where the magnetization is found to
point out of the plane of the film. LTEM imaging also
shows vortices to be favorable configurations in permalloy
nanodisks [2,4]. High sensitivity magneto-optical meth-
ods have been used [5] to measure the hysteresis loops on
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Supermalloy (Ni80Fe14Mo5) nanodisks, and the shape of
the loops agrees very well with that of calculated loops
in micromagnetic simulations of thin disks with vortex
states. These experiments have opened the door to di-
rectly checking theories of vortices in ferromagnetic ma-
terials, making possible an understanding of the interplay
between mesoscopic nonlinear collective excitations and
geometrical constraints, such as shape, size and bound-
ary conditions at the interfaces (see Ref. [7]). Concerning
dynamical properties, it is important to investigate the re-
sponse of systems with vortex states to applied bias fields,
which are control variables in experiments and potential
applications. The dynamical effects of nonlinear excita-
tions in finite two-dimensional (2D) and quasi-2D spin
systems are especially relevant for read-heads in storage
devices, because of the high speeds of transfer reached by
today’s hard disks. Still, experiments are lacking which
can resolve, in space and time simultaneously, and hence
numerical simulations of Landau-Lifshitz equations have
been the traditional source of data regarding vortex dy-
namics. Simulation of 2D systems is important because
there are many 2D and quasi-2D magnetic materials, in
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the form of mono-layers, layered and intercalated-layered
compounds (for a review see Ref. [8,9]), which are known
to support nonlinear excitations.

On the other hand, vortices have been shown to be rel-
evant in many fields of theoretical physics, including 2D
electron plasmas, 2D superfluid and superconductor sys-
tems, and 2D Josephson junction arrays, and it is well
established that they drive the topological phase tran-
sition of Berezinskii-Kosterlitz-Thouless [10] (BKT). In
the continuum approach, exact static solutions for the
2D isotropic Heisenberg model are known, in the form
of topological metastable states [11], but as soon as a
weak XY-type anisotropy or a magnetic field are included,
the topologically non-trivial solutions are not known in a
closed analytical form, but only through numerically ob-
tained vortex-like profiles. For the 2D anisotropic easy-
plane case, already in the 1980s two kinds of vortices
were identified [12]: in-plane (IP) or planar vortices, which
are solutions with the magnetization always parallel to
the XY-plane, and out-of-plane (OP) vortices, with OP
components of the magnetization in the vortex center
region or “core”, from which only asymptotic behavior
was known [12]. Both types of vortices were found to
be stable in different regions of the anisotropy parameter
(see Hamiltonian (1) below) in numerical simulations, and
their asymptotic behavior and deformations due to move-
ment were calculated for each region [13]. In the context
of a phenomenology of a dilute gas of vortices, their con-
tributions to low-frequency “central peaks” in dynamical
form factors were studied [14,13]. The crossover from IP
vortices (for λ < λc, see 2) to OP vortices (for λ > λc)
was also established by analytical arguments [13,15].

Most of the above work was done mainly at zero mag-
netic fields, which complicated even more the scenario.
Although much work has been done on the XY-model
(λ = 0) with static IP magnetic fields [16], little is known
about the properties of easy-plane models with magnetic
fields for general λ. A field applied in the XY-plane lifts
the degeneracy of the ground state and selects a prefer-
ential direction. In the presence of a vortex this kind of
field can lead to formation of domain walls connecting the
vortex core with the boundary of the system.

A magnetic field perpendicular to the easy plane tilts
the ferromagnetic IP ground state into the so-called “cone
state”, in which the z-component of magnetization results
from a competition between the OP field and the effective
anisotropy field [17]. The IP component of magnetization
is still in some arbitrary direction of the plane since the IP
isotropy is not broken. The shape of an OP vortex in the
presence of such a perpendicular field was calculated [17],
and a study of the magnon modes in this system is in
progress [18].

The dynamics of OP vortices in easy-plane magnets in
an external static field with both IP and OP components
has not yet been investigated. In addition, the study of
OP vortices in the presence of time-dependent magnetic
fields is very limited. Apart from a prior short work in
reference [19] where the dynamics of OP vortices in a uni-
form rotating IP field was investigated for the first time,

we are aware of only one work about vortex pairs in a
uniform oscillating IP field (Ref. [20]).

In this paper we are concerned with dynamics of OP
vortices, driven by either an ac rotating IP magnetic field
or a static field with both IP and OP components. The
switching of the OP components of magnetization of a
vortex in a 2D lattice is numerically studied (Sect. 3) for
the first case, extending the earlier work of reference [19],
and a discrete reduced model of the vortex core (which
can account qualitatively for the features of this process)
is proposed (Sect. 4). A relation between this system and
the one in the second case, which contains only a static
field, is explored (Sect. 3) by transforming to a rotating
reference frame. In both cases, a coupling between the
OP oscillation modes of the vortex structure and the IP
movement of the vortex center, while it moves around in
the lattice, is seen in the simulations. In the context of
our reduced model of the vortex core, a formal connec-
tion is found between one of its equations, governing the
antisymmetric oscillation modes (Sect. 4.2), and a gener-
alized Thiele equation, that is believed to give a low or-
der approximation to the movement of the vortex center
(Appendix B). We have carried out extensive numerical
simulations which confirm and extend the results in ref-
erence [19]. Our work is theoretical in character, but we
briefly discuss in the Conclusions the extent of applicabil-
ity of our results to real samples of ferromagnets.

2 Hamiltonian, equations of motion
and symmetries

In this section we will present a review of our model,
which is given by the easy-plane Heisenberg Hamiltonian
for classical spins Sn with fixed length S, located on sites
n = (nx, ny) of a 2D quadratic lattice:

H = −J
2

∑
n,n′

Sx
n S

x
n′ + Sy

n S
y
n′ + λSz

n S
z
n′ , (1)

where λ is the anisotropy parameter (0 ≤ λ < 1), J > 0
is the exchange integral, and the sum over n′ = n + a
runs over the nearest neighbors of n (ax = ±a, ay = 0 or
ax = 0, ay = ±a , with a the lattice constant). We take
S to be dimensionless (� = 1) and so J has energy units.
In what follows we may also set J = 1 and S = 1, as
well as a = 1, when convenient. The limiting cases λ = 0
(XY-model) and λ = 1 (isotropic model) have different
ground states: the first one has a collinear ground state
pointing in some arbitrary direction of the plane, while
for the latter one this direction is arbitrary in the whole
3D space.

The interaction with an external magnetic field Hn(t)
has the general form

V (t) = −γ0

∑
n

Hn(t) · Sn, (2)

where the gyromagnetic factor γ0 ≡ 2µ0µB, with µ0 the
vacuum permitivity and µB the Bohr magneton (in MKS,
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when � �= 1, γ0 ≡ 2µ0µB/� = 0.221MHz
A/m ), will be absorbed

from now on in a field hn(t) ≡ γ0Hn(t) having the same
units as J .

The spin dynamics is described by the Landau-Lifshitz
(LL) equations, which in normalized form can be writ-
ten as

dSn

dt
= −Sn × ∂ [H + V (t)]

∂Sn
+ εSn ×

(
Sn × ∂H

∂Sn

)
·
(3)

With 1 ≤ nx, ny ≤ N , these are 3N2 equations which pre-
serve the lengths of the spins |Sn| = S. We have added
to the LL equations a phenomenological damping term
à la Landau [21], with a small dimensionless parameter ε.
We did not include in this term some contribution com-
ing from the interaction with the external field, having in
mind a damping which arises from the exchange interac-
tion (see remarks in Appendix A). We will consider here
spin dynamics under the influence of a spatially uniform
in-plane (IP) rotating field

h(t) = h (cos(ωt+ α0), sin(ωt+ α0), 0) (4)

with amplitude h, frequency ω and initial phase α0, which
is switched on at t = 0. We may put in general α0 = 0, but,
as we will see, the initial orientation of the field has some
visible consequences on the trajectories of vortices. We are
interested in weak and slowly varying fields h, ω � J , so
as not to perturb the states at zero field significantly, and
also small damping ε� 1.

For typical quasi-2D ferromagnetic materials with
easy-plane symmetry (for instance K2CuF4, a layered
magnet with a ratio of interplane-to-intraplane exchange
constants J ′/J ≈ 10−4, see Ref. [6]), at low temperature
(Tc ≈ 6.25 K), with an exchange interaction J ≈ 10 K and
anisotropies ranging from 1 to 10% (λ ≈ 0.99 to 0.9 resp.),
the anisotropy field, given by γ0Ha = 4J(1− λ), is in the
range Ha ≈ 3 to 30 kOe [6,18]. Corresponding resonances
are in the range ωa ≡ γ0Ha ≈ 50 to 500 GHz, respec-
tively. The field intensities we used in our simulations of
Section 3 are in the order h ≈ 10−3J , which for the above
value of J represent a field intensity H ≈ 74.4 Oe � Ha.
For an estimation of the frequencies, we have to restore
the value of �. Our dimensionless time variable has then
a scaling factor ω0 = J/� ≈ 1.3 THz, so the typical fre-
quencies in our simulations are in the range ω ≈ 10−3ω0

to 10−2ω0 ≈ 1 GHz to 10 GHz � ωa, in most of our sim-
ulations (λ = 0.9).

In considering spins of fixed length, it is convenient to
have the above expressions in terms of polar angles: Sn =
S{sinΘn cosΦn, sinΘn sinΦn, cosΘn}. The Hamiltonian
now reads

H = −JS
2

2

∑
n,n′

{Pn Pn′ cos(Φn − Φn′) + λMnMn′},

(5)

where Mn = cosΘn is the on-site z-component of the
magnetization, canonically conjugated to Φn, and we de-
fined Pn ≡ √

S2 −M2
n = sinΘn. The interaction with

the field takes the form

V (t) = −hS
∑
n

Pn cos(Φn − ωt− α0), (6)

and the 3N2 “Cartesian” LL equations reduce to the 2N2

“polar” equations

Φ̇n =
∂ [H + V (t)]

∂Mn
− ε

1 −M2
n

∂H

∂Φn

Ṁn = −∂ [H + V (t)]
∂Φn

− ε (1 −M2
n)

∂H

∂Mn
· (7)

This latter form will be useful for analytical considera-
tions. Notice that at zero damping these are the Hamilton
equations for the system. It is worth noticing also that
equations (5–7) (and also Eqs. (A.3) of Appendix A, in
angular variables), are invariant under the transformation

Mn → −Mn, Φn → −Φn, ω → −ω, α0 → −α0, (8)

which has consequences for the dynamics of vortices in the
presence of our ac magnetic field (see next section). An IP
static field would then be represented by a vanishing fre-
quency ω = 0 in the formulas above, and the symmetry (8)
would be reached with the sole change α0 → −α0, i.e.,
hy → −hy. A perpendicular static field h = hzẑ would
add an interaction term

W = −hz

∑
n

Sz
n = −hzS

∑
n

Mn (9)

and the symmetry (8) would then require hz → −hz.

2.1 Static configurations and vortices

Vortices in this system are known to be stable excitations
characterized by two non-null topological charges. Topo-
logical properties must be understood in terms of contin-
uum descriptions. Although we will work with our model
directly in discrete form, we need to present at least some
definition of vortex solutions in a continuum description.
Further details can be found in references [9,23–25]. By
expanding Sn+a up to 2nd order around Sn, the Hamil-
tonian (1) results in

H = −J
2

∫
d2x

{
S ·∆S − δSz ∆Sz − 2δ

a2
S2

z

}
,

where δ = 1 − λ and a constant H0 = −2JS2N2 was
dropped. This can also be expressed in canonical vari-
ables M(x, y, t) and Φ(x, y, t). Adding an interaction with
a static field with both IP and perpendicular components

V = − S

a2

∫
d2x

{
h
√

1 −M2 cos(Φ− α0) + hz M
}

will give a homogeneous ground state with Φ = α0 or
α0 + π , and M resulting from the quartic equation

(1 −M2)(hz − 2JSδM)2 − h2M2 = 0, (10)
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which shows the competition between the fields and the
anisotropy. In particular, the case of a pure IP field finds
a minimum of the energy in the trivial planar solution
(M = 0 or Θ = π/2). The case of a pure out-of-plane (OP)
field gives the cone state [17]: M = cosΘ = hz/(2δJS),
where Φ is not constrained. Finally for the isotropic case
(δ = 0) we have a tilted collinear state with M =
±hz/

√
h2 + h2

z, again with Φ = α0 or α0 + π.
The simplest static (and the only exactly known) vor-

tex solution at zero field is an IP vortex

M(r) = 0, Φ(r) = Q arctan
(
y − Y

x−X

)
+ ϕ0 (11)

which is singular at (X,Y ) ≡ X, the coordinates of the
vortex center. The constant ϕ0 will only set the relative
orientation of the vortex with respect to an IP field which
breaks the IP isotropy [16], otherwise it is irrelevant: con-
sidering how Φ couples to a magnetic field in (6), we see
that ϕ0 can be absorbed into α0.

The vorticity of an arbitrary configuration is defined
by the circulation integral

Q =
1
2π

∮
∇Φ(r, t) · dr

and will be a non-null integer only if the contour of inte-
gration encloses the center of a vortex. The total Q is a
conserved charge during the time evolution of the config-
urations in the present model. A discrete version of the
circulation condition over the azimuthal angles Φn in the
presence of a vortex can be formulated [10] as∑

γ(n)

∆Φ(n, t) = 2πQ (12)

where ∆ is the first difference operator along a closed path
γ(n) on the lattice. This gives a practical criterion to find
in which plaquette (unit cell) of the lattice the center of
a vortex lies. A further refinement for finding a better
estimate for the position of the vortex center within a
plaquette, in the simulations, is described in reference [25].

The existence of two kinds of vortices (IP vortices
like (11), stable for λ < λc and OP vortices with Mn �= 0,
stable for λc < λ < 1 , where λc � 0.72 for a square lattice)
is already well established in numerical simulations [13].
In reference [15] the so-called “out-of-plane instability”
around a lattice-dependent critical value λc was studied
analytically within the context of a reduced model of the
core of a vortex. The OP structure of static vortices shows
a characteristic asymptotic behavior [13] in polar coordi-
nates of the plane (x, y) = (r cosϕ, r sinϕ) :

M(r) =




±
(
1 − b2r2

2r2
v

)
, for r → 0,

±c√rv

r exp [−r/rv], for r → ∞,

where

rv = a
√
λ/(1 − λ)/2 (13)

is interpreted as the radius of the vortex core, or character-
istic length of the OP structure, and b and c are constants
to be adjusted by matching the two expressions at r = rv.
This exponential behavior is a particular feature of mag-
netic vortices, in contrast to vortices in other fields, like
superfluids, etc.

In addition, magnetic vortices carry a second topo-
logical charge: for 2D models where OP structures can be
stable (e.g., when λ > λc) we must consider a second topo-
logical invariant, sometimes called the Pontryagin index:

Γ =
1
4π

∫
σ

g dxdy =
−1
4π

∫
σ

sinΘ dΘdΦ

g = (∂xS × ∂yS) · S = ∇M(r, t) × ∇Φ(r, t) · ẑ,
where the area σ encloses the excitation, but is arbitrar-
ily shaped. We term g “gyro-coupling” density, following
Thiele [26]. OP vortices are gyrotropic excitations in the
sense that their dynamics in the continuum limit con-
serves the gyrovector G = Gẑ, where G = 4πΓ . Col-
lective variable theories for the movement of the centers
of both OP (gyrotropic) and IP (non-gyrotropic) vor-
tices, always in the continuum limit, have been devel-
oped [25]. The gyrovector of a vortex with the IP struc-
ture (11) but for general M(r) is easily calculated [27] at
zero field, by giving proper physical boundary conditions
M(r = X) = ±1,M(r→ ∞) = 0, resulting in

G = −2πQ ẑ[M(r = X) −M(r → ∞)] = −2πQp ẑ,
(14)

where p = M(r = X) = ±1 is the magnetization in the
center of the vortex, or the polarization. It is easily seen
that a magnetic field will modify this result. For instance,
a weak perpendicular field pointing in the +ẑ direction,
will tilt the spins sited far from the vortex core, where
they lie in the plane, towards above the plane. Depending
on whether the vortex has G parallel or antiparallel to the
field (“light” or “heavy” vortex, respectively [17,18], see
Sect. 3.4), this field will enhance the region of the core,
where the spins are more perpendicular to the plane, or
will reduce it, respectively.

Since both Q and Γ = − 1
2Qp are invariants, it follows

that p is also conserved during the dynamics of a single
vortex in the continuum limit. This is not a constraint,
however, for a discrete system.

In a discrete model, G can be rewritten in first finite
difference approximation [28] as

G =
1
4π

∑
n

(Sn+a − Sn−a) × (Sn+b − Sn−b) · Sn,

(15)

where a = ax̂ , b = aŷ are basis vectors of the lattice. This
quantity is generally not conserved during the dynamics of
the discrete system, equations (3), which allows processes
such as the switching of polarization shown in the next
sections.

On the other hand, stability conditions, which should
be fulfilled by any static configuration, are obtained from
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the variation of the Hamiltonian (5), i.e.

∂H

∂Φn
= 0 = Pn

∑
a

Pn+a sin(Φn − Φn+a) (16)

∂H

∂Mn
= 0 =

Mn

Pn

∑
a

Pn+a cos(Φn − Φn+a)

−λ
∑

a

Mn+a, (17)

where we have not included a possible contribution from
static magnetic fields, which will have in general the effect
of deforming any configuration, including vortices. It is
important to stress that a strong enough magnetic field
can even destroy vorticity in the finite system.

For an IP vortex the condition (16) becomes

∑
a

sin(Φn − Φn+a) = 0 (18)

while for OP vortices this is only approximate, for the
region far from the core, where Pn approaches unity.

In a previous work [19], the first results were presented
concerning the dynamics of an OP vortex in the presence
of a weak magnetic field of the form (4). The analytic
work was restricted to small amplitude fields, which made
it possible to treat the field as a small perturbation. In
the next sections we will extend these calculations in the
framework of a reduced discrete model, and numerically
explore more details of the system, concentrating on the
“flipping” times (see Sect. 3) and searching for the effects
of variations in the size and anisotropy of the system.

Due to the approximate azimuthal symmetry of the
static vortex IP structure it is convenient to work on a lat-
tice with a circular boundary, so that we can set the condi-
tions at the boundary more easily via the image method,
with only one image per vortex, in analogy with a 2D
electrostatic problem. The static interaction between two
such IP vortices, at zero field, has the well-known [10] log-
arithmic form

E = −2πJS2Q1Q2 ln |X1 − X2|, (19)

where Xi = (Xi, Yi) are the coordinates of the ith vortex
center (i = 1, 2) in the plane. The deviation from this law
for OP vortices in the easy-plane case (λc < λ < 1 ) is
negligible at distances much larger than the typical size of
the cores rv, as given by (13) such that the OP structures
do not overlap. In the presence of an IP magnetic field
the mutual interaction between IP vortices was estimated
for the XY model (λ = 0): it becomes linear for large
distances due to the field, and no BKT phase transition
is then expected since this field removes the continuous
degeneracy of the ground state (see for instance Ref. [16]).

Vortices with |Q| > 1 are known to decay rapidly to
|Q| = 1 vortices, radiating spin waves, so we can con-
sider here only the |Q| = 1 case. In the case of a circular
system with radius R0 and free boundary conditions, the
azimuthal angles Φn (the IP structure) for both IP and

OP static vortices are given approximately by the super-
position

Φ0
n = arctan

(
ny − Y

nx −X

)
− arctan

(
ny − Ȳ

nx − X̄

)
, (20)

where X̄ = XR2
0/R

2, Ȳ = Y R2
0/R

2 (R2 = X2 + Y 2)
are the coordinates of the image vortex. In the case of
fixed boundary conditions the sign in front of the second
term in equation (20) is reversed. In the discrete case,
equation (20) is only an approximate solution of the ex-
treme condition (18) for the in-plane static configuration,
suitable for setting initial conditions for simulations. In
contrast, the condition (12) accompanies even the mobile
vortices.

2.2 Symmetries of the model: vortices and magnetic
fields

We return now to the symmetry (8). We use the label
“up” for the direction +ẑ. It is easy to see that the two
first changes in (8) transform a vortex configuration point-
ing up (Q = 1, p = 1) into an antivortex pointing down
(Q = −1, p = −1). Accordingly, the dynamics of an
up-vortex in a field anti-clockwise “up” (ω = ωẑ , with
ω > 0), initially pointing towards, say, the positive ŷ di-
rection (α0 = π/2) is indistinguishable from the dynamics
of a down-antivortex in a clockwise “down” field ω < 0,
initially pointing in −ŷ direction (α0 = −π/2). In this
way, out of the 16 combinations of signs of (Q, p, α0, ω)
only 8 have a different dynamics, as can be seen from Ta-
ble 1. This is quite natural, considering that the infinite
system is invariant upon reversal of the z-axis , as is the
case with the finite system, where the border is circular so
as not to select preferential directions. This is confirmed
in our numerical simulations in circular systems, whose
details are explained in the next sections.

Out of the 8 independent combinations, we have 2 sce-
narios: the 4 systems for which the “angular velocity”
ω = ω ẑ of the field is antiparallel to the initial vortex
polarization (p ω < 0) are seen to produce during the dy-
namics (for a strong enough field, to be quantified later)
a switch in the sign of the whole OP vortex structure (re-
ferred to as “flip” or “switching”), in particular p → −p,
while those 4 systems whose ω is parallel to the initial po-
larization (p ω > 0) do not show a flip (see next sections
for details).

The same picture is recovered for an equivalent system
with one vortex and a static field with both IP and OP
components, in the reference frame which rotates with fre-
quency ω: one field component in an arbitrary direction
in the plane, say ŷ (if we put α0 = ±π/2 as in Tab. 1),
with strength hy = ±h , and the other component in
the z-direction with strength hz = ±ω . The equivalence,
strict only in the bulk, proceeds as follows. In the frame of
reference which rotates together with the magnetic field,
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Table 1. Combinations of charges of a single vortex and signs
of parameters of magnetic fields. (α0, ω) refer to the rotating
field (4), while (hy , hz) refer to a static field with both IP and
OP components. The numbers at the left and right of the table
show systems with indistinguishable dynamics.

Q p α0 or hy ω or hz Qα0 pω
1 +1 +1 +1 +1 +1 +1 16
2 +1 +1 +1 −1 +1 −1 15
3 +1 +1 −1 +1 −1 +1 14
4 +1 +1 −1 −1 −1 −1 13
5 +1 −1 +1 +1 +1 −1 12
6 +1 −1 +1 −1 +1 +1 11
7 +1 −1 −1 +1 −1 −1 10
8 +1 −1 −1 −1 −1 +1 9
9 −1 +1 +1 +1 −1 +1 8
10 −1 +1 +1 −1 −1 −1 7
11 −1 +1 −1 +1 +1 +1 6
12 −1 +1 −1 −1 +1 −1 5
13 −1 −1 +1 +1 −1 −1 4
14 −1 −1 +1 −1 −1 +1 3
15 −1 −1 −1 +1 +1 −1 2
16 −1 −1 −1 −1 +1 +1 1

Φn − ωt = Ψn, the LL equations (7) take the form

Ψ̇n =
∂

∂Mn
(H + V ) − ε

1 −M2
n

∂H

∂Ψn
+ ω

Ṁn = − ∂

∂Ψn
(H + V ) − ε (1 −M2

n)
∂H

∂Mn
· (21)

Hence, in this frame the dynamics is equivalent to that of
a system with a static field with both an IP component
h1 = h(cosα0, sinα0, 0), which produces the interaction

V = −
∑
n

Sn · h1 = − h
∑
n

Pn cos(Ψn − α0), (22)

and an OP component h2 = (0, 0,−ω) aligned along the
angular velocity ω, which produces the interaction

W = −
∑
n

Sn · h2 = ω
∑
n

Mn. (23)

In this case vortices for which p hz < 0 are called “heavy”
vortices [18] and are seen to flip to “light” vortices during
the dynamics, while “light” vortices (p hz > 0) remain
stable.

For our investigations below, it is sufficient to carry out
simulations with vortices (Q = 1), up and down (p = ±1)
with respect to ẑ.

3 Computer simulation results

We have carried out extensive computer simulations with
OP vortices in the presence of a rotating field. We
have numerically integrated the full Landau-Lifshitz equa-
tions (3), for square lattices of several sizes (with N2 ≡
L2 = 482, 722, 962, and 1202 spins), taking care of dis-
tinguishing those cases when the vortex dynamics has a

stronger influence from the external magnetic field from
those cases in which the influence from the image-vortex
field is stronger. In each lattice the system is defined by a
circular border with diameter L = 2R0, in order to more
easily set free boundary conditions: for a vortex (Q = 1)
with polarization up (p = 1) at the position X = (X,Y ),
only one image anti-vortex (Q = −1) with polarization up
at the position X̄ = (X̄, Ȳ ) is needed.

For most of the simulations, unless otherwise stated,
the values of anisotropy (λ = 0.9) and damping (ε =
0.002) were set as in reference [19]. At this λ, the typi-
cal radius, or characteristic length, of the OP structure of
the vortex, given by the continuum limit (13) is around 1.5
lattice constants, although, as can be seen in Figure 8a,
non-negligible z-components of the spins extend in fact
well up to 2.5 lattice sites in each direction.

We have studied mainly the system of diameter L = 72
with free boundary conditions, for which we present a de-
tailed phase diagram of flip events in the space of the pa-
rameters (ω, h) of the magnetic field. We used relatively
weak amplitude fields so as neither to change the ground
state significantly, nor to destroy the vortex. The integra-
tion time for this phase diagram was set to a maximum
of 25,000 time units, in a 4th order Runge-Kutta integra-
tion method with time step 0.01, although we performed
some special simulations to much longer times. Some fur-
ther details of the numerical procedures employed, such
as the generation of the initial vortex configuration and
the way to calculate the vortex core position at each time,
are described in the Appendix of reference [25].

3.1 Summary of prior results

It was shown in reference [19] that due to the action of
an IP rotating magnetic field the z-component of all spins
in the core of an OP vortex, and therefore the vortex po-
larization p ≡ Mz(n = R), can abruptly change in sign,
so that the whole vortex OP structure is reversed from
one side of the lattice plane to the other (we refer to this
event as a “flip” or “switch”, see Fig. 1) provided that
the amplitude of the field is higher than a certain critical
value hcr which depends on the frequency and the initial
vortex polarization, but not on the vorticity. The authors
of that work used a square lattice with circular bound-
ary of diameter L = 48, and presented for this system a
curve of the critical amplitude as a function of ω. Starting
with a vortex with polarization p = 1 it was found that
the threshold value hcr(ω) for a clockwise rotating field
(ω < 0), was much smaller than that for counter-clockwise
(ω > 0) field. In the latter case the final structure of the
vortex was often destroyed by spin waves. Exactly the in-
verse situation occurred when they used a vortex with
p = −1 as initial condition: this time the switch to p = 1
was favored for a counter-clockwise rotating field.

The switch of the magnetization was thus found to be
a unidirectional event: a vortex state with a determined
polarization and not the opposite one is favored by the
rotating field, so that only when the product ω p < 0 does
the final state of the vortex have a well defined structure.
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Fig. 1. Above: Typical time evolution of the core magnetiza-
tion (average of M� over the 4 inner spins) of a vortex (q = 1),
initially pointing up (p = 1), showing a flip at t ∼ 574 in a weak
rotating field ω = −0.05, h = 0.0024. The time evolution of the
velocity modulus of its center is also shown. Data from numeri-
cal simulations of the full LL equations (3), on a square lattice
with circular boundary of diameter L = 72. Below: Typical
vortex trajectory, corresponding to the time evolution shown
above, until a longer time t = 2, 600. Starting from the center
(0, 0) of the lattice, it turns clockwise very irregularly. The flip
occurs in the part of the trajectory signaled by an asterisk.
The intersections of grid lines are the lattice sites.

The basic reason for the switching was argued to be
easily understood by using the frame of reference which
rotates together with the magnetic field: Φn−ωt = Ψn. As
explained in Section 2.2 the vortex feels effectively a static
field with both IP and OP components. The perpendicu-
lar component clearly breaks the up-down symmetry and
thus the vortex states with different polarizations are not
equivalent, the switching process becoming energetically
favored. It was noticed, however, that this argument does
not explain why the threshold amplitude for the switch-

ing is a non-monotonic function of the frequency ω. This
explanation seems a difficult task, considering the num-
ber of parameters which are potentially playing a role.
Our reduced model of the next sections will not account
for flip times, which we believe to be determined by the
complexity of the full many-body system, but rather for
qualitative features of the process.

3.2 Results of new sets of simulations

The results of reference [19] are substantially confirmed in
the simulations of the present work. We first note, how-
ever, that some main conclusions in that paper were drawn
from simulations at |ω| = 0.1, which was found to be close
to the frequency of the lowest radially symmetric eigen-
mode in the presence of a vortex [15,31,32]. We have real-
ized meanwhile that |ω| = 0.1 is already a rather high fre-
quency, as can be seen from considerations of the ground
state, analogous to those which led to the equation (10)
in Section 2.1, for J = S = 1 and λ = 0.9. For the same
reason, when we present the size-dependence of the flip-
ping time, and a phase diagram of flip events in the space
of field parameters (ω, h), we do so for values |ω| < 0.1.

Secondly we note that the argument in the Section 3.1
can also not be applied to the limiting case ω → 0, i.e.,
of an OP vortex driven by a constant IP field. The trans-
formation to the “rotating” frame of reference makes no
sense here. It is clear that in this case the perturbation
does not break the up-down symmetry. We mention, how-
ever, that in a set of our simulations with ω = 0 (static IP
field) we also find switching behavior. In this case there
can be back switches, as expected from the symmetry,
provided that the system is large enough to observe these
successive flips before the vortex leaves the lattice through
the boundary. Concerning this case, we believe that the
magnon (up-down symmetric) perturbation produced by
the static field interacting with the moving vortex can be
responsible for a flip to occur, as is the case when the per-
turbation is thermal noise [30]. We will not study the case
of ω = 0 any further here.

In Figures 1–2 we show some typical results of the
simulations for a system of diameter L = 72 in a rotating
field (ω = −0.05, h = 0.0024). In Figure 1 above, we plot
the core magnetization, i.e., the average of Mn over the
4 inner spins of the vortex.

The velocity modulus is also plotted, in order to ob-
serve (a) the correlations between these two signals and
(b) the increasing velocity fluctuations immediately fol-
lowing the flip. The latter is a clear finite size effect: the
flip process produces a circular spin wave propagating
outwards, which is reflected at the boundary in a non-
symmetric way because the vortex is not at the center
of the lattice at the moment of flipping. After some time
these waves are damped out because of the damping term
we added in the equation (3). The fluctuations in the core
magnetization are in any case smaller after the flip than
before, showing the larger stability of the vortex whose gy-
rovector is parallel to the angular velocity ω of the field.
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Fig. 2. Above: Zoom-in of a small section of Figure 1 (above),
showing correlation between core magnetization and veloc-
ity signals, i.e. between out-of-plane oscillations and in-plane
movement. Below: Initial section of trajectory from Figure 1
(below) enhanced, corresponding to the time evolution shown
in Figure 2 above. Starting from the center and clockwise, some
events of crossing the saddles of the lattice potential are shown,
to be identified with corresponding events (minima and max-
ima) in Figure 2 above.

We also plot sections of the trajectory, traced by the suc-
cessive positions of the vortex center. Since the main goal
of this paper is to study the vortex flip process, a complete
analysis of trajectories will be deferred to a forthcoming
work. Here we only show a small trajectory section as ref-
erence, to illustrate how the vortex movement over the
Peierls-Nabarro periodic potential of the lattice has the
effect of coupling the in-plane movement with the oscilla-
tions in z-direction of the vortex core magnetization (see
Sect. 3.3).
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Fig. 3. Non-monotonous size effects: flip time vs. (in-plane,
rotating) field amplitude h, for a field frequency ω = −0.05,
in circular systems of several diameters, obtained from the nu-
merical integration of the full Landau-Lifshitz equations, with
damping ε = 0.002 and anisotropy λ = 0.9. For h � 0.0065 the
differences are negligible for the sizes considered.

We have noted also that when the anisotropy approa-
ches the instability region close to λc we can have reverse
flips (Fig. 6), but the prior result about uni-directionality
of flips is strictly correct at the value λ = 0.9, at which
most of the simulations in reference [19] and ours were
performed.

Among the questions opened by reference [19] is the
relative influence of the boundary (size effects) and the
magnetic field on the switching of vortex polarization. We
have extended in this work the numerical simulations to
include the sizes mentioned at the beginning of this sec-
tion. The size effects can be seen in Figures 3–4. In Fig-
ure 3 the flip time vs. field amplitude h, for the frequency
ω = −0.05, is shown for several sizes. We can see from this
figure, first that the flip times increase mainly with de-
creasing amplitudes (up to some non-monotonic jumps),
which gives one confidence to speak reasonably about a
critical amplitude, or a threshold field, for the flipping
process to occur. It must be emphasized that all the sim-
ulations can be carried out in a finite observation time,
so the critical curve (Fig. 5) is determined as that curve
which separates fast events of flips from very late or im-
possible ones. Except for the critical region at very low
amplitudes, the flip process is in general a relatively rapid
event, of some hundreds of time units, in all the simula-
tions. Very long simulations (t � 25, 000) will start to find
accuracy problems. This number is about the limit when
the energy of the system at zero damping and zero field
stops being constant due to the presence of accumulative
numerical errors. In the prior work [19], the simulations
were stopped immediately after a flip was detected, with a
maximum time of 12,000 time units. We have continued all
our simulations after the flips, to see in more detail the fi-
nal states, and we have set a maximum time of 25,000 time
units.
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Fig. 4. Time evolution of the core magnetization and the ve-
locity modulus, as in Figure 1 (above), of a vortex in a magnetic
field (ω = −0.05, h = 0.0022) for 3 different sizes.

Figure 3 also gives insight into the relative effects of the
size of the system on the flip time. It tells us that the prior
results in reference [19] were obtained for a rather small
lattice. We can see that the present system with diameter
L = 72 spins is much closer to what we can expect as
bulk behavior, minimizing thus the size effects. We can
expect relatively small size effects whenever we consider
amplitudes h � 0.004 (for frequency ω = −0.05), over a
wide range of sizes from L = 72 up to the bulk, as is seen
in Figure 3.

The time evolution for a field (ω = −0.05, h = 0.0022)
is plotted in Figure 4 for several sizes. We can see that the
velocity fluctuations after the flip are larger the smaller
the system is, showing the size effect mentioned above.

In Figure 5 we show the phase diagram in the space
of field parameters (ω, h) resulting from numerical simula-
tions of a system of diameter L = 72, concentrated in the
region of low frequency and low amplitude of a clockwise
(ω < 0) applied field. We observe almost the same behav-

ior as in Figure 2 of reference [19], with a relatively small
shift of the threshold values, but, in contrast, “windows”
appear here: flip events in regions were no flip was ex-
pected, and vice versa, non-flip events in regions were flips
were expected. We can at present only account, with our
calculations in the next sections, for the qualitative mean
behavior of our system, including discreteness, finite size
and anisotropy only in an approximate way, which does
not allow for an explanation of these windows. We consider
them as most likely effects of tuning all the parameters of
the system (h, ω, λ, ε,N), because changing slightly any
of them, changes considerably the position, extension and
even the existence of these windows in the diagram. In ad-
dition, for some cases a further factor must be considered:
in many simulations, particularly in the longest ones, we
have observed destruction of vortices. This was seen to be
caused by

• new additional vortices forming in the boundaries
due to the magnetic field, diffusing into the lattice. There
they can annihilate with the vortices already present, or
can escape again towards the boundary, annihilating there
with the new corresponding images;

• the original vortex simply annihilates in the bound-
ary with its image, with no additional vortices created
during the time of the simulation.

We do not deal with these cases here, because our main
concern is studying the flipping time as a rather rapid and
clean event with only one vortex. These destruction pro-
cesses are taken into account only when they occur before
the flip of p → −p, giving therefore a finished simulation
without flip.

3.3 Trajectories of vortices under influence
of an ac magnetic field

One of the aims of this paper is to show that the IP move-
ment of the center of the vortex (“center of mass motion”)
is to some extent (up to long wavelength spin waves, and
modes of the whole lattice produced by the magnetic field)
correlated with the OP oscillations of the vortex magne-
tization, supporting the idea already mentioned in refer-
ence [19] that the flipping process needs a finite velocity
and the perturbation due to the discrete lattice potential.

The time evolution of both the magnetization of the
vortex core and the velocity modulus of the center of
the vortex are shown in Figure 1 (above), together with
the trajectory of the vortex center (in Fig. 1, below), for
some typical strengths of the magnetic field and for a sys-
tem of diameter L = 72, with a single vortex pointing up
(p = 1) and sitting in the center of the lattice as initial
condition. The correlation between both signals can be
seen in the zoom-in of a small section in Figure 2. Each
maximum and minimum in the magnetization, or maxi-
mum in the velocity modulus, in Figure 2 (above), can
be identified with a single crossing of a ridge or a saddle
of the Peierls-Nabarro potential of the lattice, in Figure 2
(below). The vertices of the grid represent the lattice sites.
The section of trajectory shown starts in the center (0, 0)
and develops clockwise. The correlation is most evident
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Fig. 5. Phase diagram of flip events in the frequency-amplitude (ω, h) space, for the circular system of diameter L = 72,
obtained from the numerical integration of the full Landau-Lifshitz equations, with damping ε = 0.002 and anisotropy λ = 0.9.

before and for some time after the flip. In the immediate
time after the flip there are larger fluctuations because
the flip itself creates an azimuthally symmetric spin wave
which propagates towards the boundary and is reflected
there in a non-symmetric way, so that at those times there
are many spin waves present. After this transient, the cor-
relation is evident again.

There are several types of trajectories, depending on
the frequency ω and amplitude h, that will not be shown
here. For |ω| � 0.05, at not too high amplitudes, we found
that the trajectories, after some initial irregularities, spiral
out to the boundaries, at the same time smoothing to some
regular spiral, as velocities are growing. This shows the
change of regime from a “magnetic-field-driven” vortex
trajectory, when the vortex is still quite near the center
of the lattice, to a regime driven by the interaction with
the image vortex, when the vortex is far enough from the
center of the lattice. The rate of change in the radius of the
trajectories is also affected by the value of the damping.

Instead, for |ω| � 0.05 and not too low amplitudes,
we found “confining” trajectories, which stay rather long

in a strongly irregular pattern, after which they eventu-
ally converge to a regular circle, with a relatively small
radius. This equilibrium radius is given by a balance be-
tween the attraction of the image vortex, and the deflec-
tion due to the rotating field, and is, thus, size-dependent.
This is actually what happens in the case of the system in
Figures 1–2. In the cases when the vortex reaches in the
final state a regular circular motion, one can observe the
same periodicity in both the velocity and magnetization
signals.

This is a simplified summary of trajectories in this
complex system. There are other kinds of trajectories
which we will discuss in a future paper. For our present
purposes it is enough to know that, independently on
whether there will be a final “limit cycle” or the vortex
at very late times will annihilate at the boundary, in all
the cases there is a correlation between out-of-plane oscil-
lations and center of mass movement, like that shown in
Figures 1 and 2, which suggests a first hint to understand-
ing the flipping process: the same instability which makes
a moving IP vortex develop out-of-plane components for
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Fig. 6. Time evolution of the vortex core magnetization and
velocity modulus, around the flip(s) region, for 3 values of
anisotropy λ = 0.8, 0.9, 0.95 in a clockwise rotating magnetic
field for ω = −0.025, h = 0.0066, for a system diameter L = 72.
Note the larger fluctuations and instability of the core magne-
tization for λ ≈ λc.

λ > λc [13], should give some contribution to the flipping
process of a moving OP vortex. Since all the peaks and
minima in the velocity are correlated with the crossing
of some ridge or saddle of the Peierls-Nabarro potential,
we ascribe them to the discreteness of the lattice. This is
also supported in Figure 6, by observing larger fluctua-
tions –even back flip events– for values of λ closer to the
critical value λc ∼ 0.72. This out-of-plane instability in
the presence of anisotropy (discussed in Ref. [15]), will be
taken into account in the models of Section 4.

3.4 Simulations with static fields in the rotating frame

An important point of this paper is that we confirmed,
in our numerical simulations with a static field containing
both an IP component h1 and an OP component h2, as
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Fig. 7. Comparison of flipping times for 2 different systems:
with in-plane rotating field (dashed line) ω = −0.05, vs. ampli-
tude h, and (solid line) with a static in-plane and out-of-plane
fields � = (0, hy , hz), with hz = −0.05, vs. hy . The second
system is shown to be equivalent, in the rotating frame, to the
first in the static frame. Concerning flip times, we do not need
to rotate the spins (by a constant phase for each time) of the
second system. System diameter L = 96.

mentioned above, the predicted switching behavior. Fig-
ure 7 shows a comparison of flipping times for both sys-
tems under discussion here. We do not expect the flip-
ping times to be exactly the same, since the equivalence
holds strictly in the bulk limit only. The boundaries in
both reference frames are clearly different. However, in the
cases when the flip occurs relatively close to the center of
the lattice, we get better agreement, as the boundary ef-
fects are less important. As shown in references [17,18],
when a static magnetic field is applied along the hard axis
there exist two types of OP vortices in easy-plane ferro-
magnets: “light” and “heavy” vortices with the gyrovec-
tor being parallel and antiparallel to the applied magnetic
field, respectively. The energy of the heavy vortex is al-
ways higher than the light’s one. Therefore the physical
reason for switching is obvious: the system transfers from
the high energy state (heavy vortex) to the low energy
state (light vortex). It is worth mentioning, however, that
the presence of an out-of-plane magnetic field is a neces-
sary but not sufficient condition for switching. In the case
of a relatively weak OP magnetic field, when the heavy
vortex exists as a metastable state of the system, only the
presence of an IP component of the static field makes the
flipping process possible. This IP component must also be
weak in order to keep the vortex confined to the finite
system and to have enough time to observe the flip.

4 Discrete core models

As was mentioned in the previous paper [19], the totally
symmetric core mode which describes the dynamics of the
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vortex polarization does not interact directly with a spa-
tially uniform external magnetic field when the vortex is at
the center of the system. Two possibilities were proposed
to remove this restriction:
1. In finite systems the vortex moves away from the center

due to the interaction with its image, in this way the
totally symmetric core mode may be excited.

2. Switching may occur as a result of nonlinear mixing
between the totally symmetric mode and nonsymmet-
ric vortex modes, which do interact with the spatially
uniform external magnetic field.

Considering in reference [19] relatively small systems, that
work assumed that the first mechanism is more important.
However, our present numerical simulations showed that
the switching process does not depend crucially on the
size of the system provided it is large enough (see Fig. 3).
Therefore in this paper we will discuss the second mecha-
nism for the switching of vortex polarization.

4.1 Full core model

To gain an insight into how the external magnetic field
affects the vortex dynamics we need a reduced form of
the Hamiltonian (5) and the interaction (6) which can
take into account effectively both IP and OP vortices. We
will use a core approach which is a generalization of the
approach proposed in reference [15]. We will assume that

i) the in-plane angles Φ0
n for static in-plane and out-of-

plane vortices are given by equation (20), in X = Y = 0
without the image contribution;

ii) the deviations of the in-plane angles from their
static values ψn = Φn−Φ0

n and the out-of-plane moments
mn rapidly decay with the distance rn =

√
n2

x + n2
y from

the center of the vortex:

ψn =




ψ1, for n = (1/2, 1/2),
ψ2, for n = (−1/2, 1/2),
ψ3, for n = (−1/2,−1/2),
ψ4, for n = (1/2,−1/2),
0, otherwise

(24)

mn =




m1, for n = (1/2, 1/2),
m2, for n = (−1/2, 1/2),
m3, for n = (−1/2,−1/2),
m4, for n = (1/2,−1/2),

0, otherwise.

(25)

Thus only the first four spins nearest to the vortex cen-
ter have non-zero z-components, and appreciable IP devi-
ations from the IP static vortex structure. All other spins
lie in the x−y plane, and follow the IP distribution (20).
A sketch of this vortex structure can be seen in Figure 8.
Under these assumptions the dynamics of the vortex core
is described by the following Hamiltonian

Hc = −J
4∑

i=1

{λmimi+1 + pipi+1 sin(ψi − ψi+1)

+ 2λcpi cosψi}, (26)
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Fig. 8. Section of the out-of-plane structure (z-components) of
vortices vs. distance along a diagonal of the lattice (separated
by

√
2 if a = 1), where we chose the initial phase as ϕ0 = 0.

In (a): data from the full many spin system with λ = 0.9, a
vortex in the center at t = 20 (without magnetic field it does
not move). In (b): the vortex used as initial condition in the
full core model (28) with λ = 0.95.

where pi =
√

1 −m2
i and m5 ≡ m1, ψ5 ≡ ψ1. Here

λc = 2/
√

5 ≈ 0.894, as in the lowest order, “1st-shell”
approach for square lattices of reference [15], but in the
present approach the four spins are allowed to have differ-
ent (mi, ψi) values, and the model automatically includes
the interaction of this shell with the second (inactive) one.
The interaction with the external field (6) takes the form

Vc(t) = −h
4∑

i=1

√
1 −m2

i cos
(
ψi − ωt− i

π

2

)
(27)

and the equations of motion for the core variables mi and
ψi now read

dψi

dt
=
∂(Hc + Vc)

∂mi
− ε

1 −m2
i

∂Hc

∂ψi
,

dmi

dt
= −∂(Hc + Vc)

∂ψi
− ε (1 −m2

i )
∂H

∂mi
· (28)

To check the applicability of the core model (26–27),
we solved numerically the set of equations (28) and found
(Fig. 9) a qualitative agreement with the vortex behav-
ior obtained as a result of the full numerical simulations.
The core model gives a rather good global description of
the switching process. However, the details of the process
are very sensitive to the particular choice of parameters.
Changing, for instance, the amplitude or frequency of the
field in a fraction smaller than 10−4 can give rise to the
existence of precursors for the flip, and also back flips. But
eventually the switching occurs and the system is locked
in the new vortex state.

4.2 Reduced core model

The core model presented in the previous subsection is still
rather complicated and to gain deeper insight a further
reduction is needed. This can be achieved by considering
the behavior of the system near the threshold of IP-OP
vortex instability: (λ − λc)/λc � 1. It is convenient to
introduce instead of mi and ψi the linear combinations
which correspond to the four irreducible representations
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Fig. 9. (above) Time evolution of the core magnetization (av-
erage of the mi) from the numerical solution of the core model
of equations (28), with a rotating field of frequency ω = −0.15,
and amplitude h = 0.0305. Here J = 1/8, λ = 0.95 and
ε = 0.002. (below) Projection of the phase trajectory onto the
plane of the totally symmetric modes (Ag, Pg) (see Sect. 4.2
for definitions), which here are calculated as averages of the
mi and ψi, respectively.

of the site symmetry group of the square (2 inversions,
2 reflexions):

Ag = (m1 +m2 +m3 +m4) /4,
Pg = (ψ1 + ψ2 + ψ3 + ψ4) /4,
Bg = (m1 −m2 +m3 −m4) /4,
Qg = (ψ1 − ψ2 + ψ3 − ψ4) /4,
Au = (m1 +m2 −m3 −m4) /4,
Pu = (ψ1 + ψ2 − ψ3 − ψ4) /4,
Bu = (m1 −m2 −m3 +m4) /4,
Qu = (ψ1 − ψ2 − ψ3 + ψ4) /4. (29)

For instance, the Ag, Pg-mode is totally symmetric un-
der reflections (1 ↔ 2 and 3 ↔ 4, or 1 ↔ 4 and 2 ↔ 3) and
inversions (1 ↔ 3 or 2 ↔ 4), the Bg, Qg-mode is inversion-
symmetric and reflection-antisymmetric, and so on. It was
shown in references [15,31] that the totally symmetric
mode, when all core spins move in phase, is responsible
for the instability of IP vortices in easy-plane ferromag-
nets with weak anisotropy. Therefore, to take into account
the soft character of this mode, we will consider the to-
tally symmetric Ag, Pg-mode as a nonlinear one, while all

other modes will be considered in the harmonic approxi-
mation. By inserting equation (29) into equation (26) and
expanding the corresponding Hamiltonian we get

Hc = −16Jλc +Hs +Hns +Hu, (30)

where

Hs = 8J
{

1
2
(λc − λ)A2

g +
1
8
λcA

4
g +

1
2
λc P

2
g

}
(31)

is the Hamiltonian of the totally symmetric mode,

Hns = 8J
{

1
2
λcQ

2
g +

1
2
(λ+ λc)B2

g

}
(32)

is the Hamiltonian of the non-symmetric g-mode, and

Hu = 8J
{

1
2
λc

(
A2

u +B2
u + P 2

u +Q2
u

)
+Ag (AuQu − PuBu)

}
(33)

is the part of the core Hamiltonian which describes the
antisymmetric u-modes. In the same approximation the
interaction Hamiltonian (27) is expressed as follows

Vc(t) = −2h [Qu − Pu +Ag(Au +Bu) + Pg(Pu +Qu)]
× sin(ωt) − 2h [Qu + Pu +Ag(Au −Bu)
+Pg(Pu −Qu)] cos(ωt). (34)

In terms of the new variables (29) the equations of
motion (28) read

dAν

dt
= − ∂

∂Pν
[H + Vc(t)] − ε

∂H

∂Aν
,

dPν

dt
=

∂

∂Aν
[H + Vc(t)] − ε

∂H

∂Pν
,

dBν

dt
= − ∂

∂Qν
[H + Vc(t)] − ε

∂H

∂Bν
,

dQν

dt
=

∂

∂Bν
[H + Vc(t)] − ε

∂H

∂Qν
, (35)

where ν = u, g and it was taken into account that for
(λ−λc)/λc � 1 the out-of-plane components mi are small
and therefore in equations (35) small terms εA2

ν and B2
ν

were omitted.
Let us first consider the eigenmodes of the Hamilto-

nian (30). For the no-driving case (h = 0) the equations
of motion for the modes (29) read

Ȧg = −8J λcPg,

Ṗg = 8J
{

(λc − λ)Ag +
1
2
λcA

3
g +AuQu − PuBu

}
,

Ḃg = −8J λcQg,

Q̇g = 8J (λ+ λc)Bg, (36)

Ȧu = 8J (−λcPu +AgBu),

Ṗu = 8J (λcAu +AgQu),

Ḃu = 8J (−λcQu −AgAu),

Q̇u = 8J (λcBu −AgPu), (37)
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where ẋ ≡ dx
dt . When λ < λc (IP vortex is stable) the

equilibrium state of the Hamiltonian (31) is achieved for
Ag = 0, Pg = 0. Near this state the second term on the
r.h.s. of the second of equations (36), as well as the last
terms on the r.h.s of equations (37), are small and may
be omitted in the harmonic approximation. Under these
conditions the totally symmetric Ag, Pg-mode is charac-
terized by the eigenfrequency ωin = 8J

√
λc(λc − λ). The

Bg, Qg-mode is decoupled and oscillates with the eigenfre-
quency 8J

√
λc(λc + λ). The Au, Pu- and Bu, Qu-modes

also result in decoupled eigenmodes of the system, both
with the same frequency 8Jλc. Note that the totally sym-
metric Ag, Pg-mode is the only one which requires λ < λc.

When λ > λc (OP vortex is stable) the Hamiltonian
(31) possesses two minima Pg = 0 , Ag = ±√

2(λ− λc)/λ
:= ±m0 (m0 has the meaning of core magnetization).
For the OP vortex the frequency of the totally symmetric
eigenmode is given by ωout = 8J

√
2λc(λ − λc). It follows

from equations (37) that in this case the antisymmetric
eigenmodes are

χ+ =
1
2

(Au +Qu − i(Bu − Pu)) ,

χ− =
1
2

(Au −Qu + i(Bu + Pu)) (38)

and χ∗
+, χ

∗
−, with the corresponding eigenfrequencies

ω± = 8J(λc ±m0). (39)

In the driving case when h �= 0, inserting equa-
tions (38) into equations (33, 34) we get

Hu = 8J
{
(λc +Ag)|χ+|2 + (λc −Ag)|χ−|2

}
, (40)

Vc(t) = h (i − 1)[(−1 +Ag − iPg)χ−
+ (1 +Ag + iPg)χ∗

+] eiωt + c.c. (41)

Note that χµ and χ∗
µ (µ = ±) are now canonically conju-

gated variables with the equations of motion in the form

χ̇µ = i
∂ (H + Vc(t))

∂χ∗
µ

− ε
∂H

∂χ∗
µ

, (42)

where the Hamiltonian H is given by H = Hs +Hu.
As can be seen from equations (41, 29) the interaction

Vc(t) vanishes in the case of the totally symmetric Ag, Pg-
mode. Therefore, switching processes under the action of
the spatially uniform magnetic field can occur only as a
result of nonlinear mixing between the totally symmetric
mode and antisymmetric core modes, where the latter ones
do interact with the spatially uniform alternating external
field.

It is worth noting that the antisymmetric χ± modes
may be identified with the two lowest modes T± of refer-
ence [33] that produce the cycloidal orbital motion of the
vortex center [33,34]. The equations of motion for the χ±
modes

χ̇+ = i8J(λc +Ag)χ+ − 8Jεχ+

+h (1 − i)(1 +Ag + iPg) eiωt, (43)
χ̇− = i8J(λc −Ag)χ− − 8Jεχ−

+h (i + 1)(1 −Ag − iPg) eiωt, (44)
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Fig. 10. Time evolution of the core magnetization Ag, for
amplitude h = 0.05 and two opposite frequencies ω = ±0.05,
from the numerical solution of the reduced core model of equa-
tions (30–35). Here J = 1/8, λ = 0.95 and ε = 10−4.

can be thought of as a microscopic version of the Thiele
equations (see Appendix B) where the gyrovector modulus
G ∼ Ag is a time dependent quantity which is governed
by the equations

Ȧg = −8J(λcPg + εAg) + h(i + 1)(χ∗
− − χ+) eiωt

+h(1 − i)(χ− − χ∗
+) e−iωt, (45)

Ṗg = 8J

[
(λc − λ)Ag +

A3
g

2
+ |χ+|2 − |χ−|2 − εPg

]
(46)

+h(i − 1)(χ∗
− + χ+) eiωt − h(1 + i)(χ− + χ∗

+) e−iωt.

Thus the modes χµ (the orbital motion) are excited
by the external magnetic field (4) and they in turn act
as drivers giving impetus to the switching dynamics of
the vortex. In Figure 10 we present the time evolution
of the core magnetization Ag for two opposite frequencies
of the field, based on numerical integration of the reduced
core model (30–35). The distinction between the action of
clockwise- and counterclockwise-rotating magnetic fields
is clearly seen. It should also be mentioned that in the
framework of the reduced model the unidirectional charac-
ter of flipping events is not so well pronounced. As a rule, a
significant part of time the system is in a state when back
and forth flips take place. This is, however, in agreement
with our full simulations of the LL equations (3) which
show the same behavior in the near-critical case λ ≈ λc

for which the reduced model was derived, see Figure 6.

5 Conclusions

In this work we have investigated the phenomenon of
switching of the out-of-plane vortex magnetization, driven
by a rotating magnetic field. Our results may be summa-
rized as follows:

• Flipping times do not depend essentially on the size
of the system, provided that the lattice is large enough
(diameter L � 72). In other words, the switching of the
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vortex polarization is not much affected by the presence
of boundaries.

• A clear correlation exists between the core magneti-
zation dynamics (the oscillations of the core spins in the
perpendicular-to-plane direction) and the velocity of the
vortex center in the plane of the lattice.

• A phase diagram of flipping events from extensive
numerical simulations with an OP vortex in a rotating
magnetic field was presented. We found that in the (ω, h)
phase space there is no well-defined curve which separates
the region where the flips do not occur from the region
where they do. For a given frequency ω and increasing
amplitude h we find intervals (“windows”) of intermittent
flip- and nonflip- events.

• The switching process is unidirectional only if the
anisotropy parameter λ is not too close to the critical
value λc. The closer λ is to λc, the more unstable the
system is against flips of the vortex polarization in a weak
field, and the larger fluctuations of the vortex core mag-
netization are observed.

• Switching of the vortex polarization can be achieved
also by applying a static magnetic field with both in-plane
and out-of-plane components.

• The switching dynamics may be described in terms
of a generalized Thiele equation which takes into account
a coupling between the vortex polarization dynamics and
the motion of the vortex center.

It is clear that the phenomenon of switching we de-
scribe will not be essentially affected by the inclusion of
magnetostatic interaction. The shape of the vortex core
and the far field will be only slightly modified by this in-
teraction. The flipping process has to do essentially with
the externally applied magnetic field. The experimental
works on nanodisks mentioned in the Introduction already
reported [1,2,4] the observation of vortices in either of two
polarization states, and the switching between them was
forced by means of static fields perpendicular to the disks.
Our theoretical work qualitatively suggests that it would
be interesting as well to apply weak rotating fields, like
those used here, to control both the mean position of a
vortex in larger magnetic dots (where the vortex center
could show dynamics) and at the same time the sign of
the out-of-plane core magnetization.
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Appendix A: Remarks on the form of damping
terms

The Gilbert form of the LL equations with damping [21],
in normalized variables, reads

dSn

dt
= Sn × Bn − εSn × dSn

dt
, (A.1)

where

Bn = −δ [H + V (t)]
δSn

≡ F n + hn(t)

= J
∑

a

(
Sx

n+a, S
y
n+a, λ S

z
n+a

)
+ hn(t) (A.2)

is the effective field each spin feels because of the action
of its neighbors and the external magnetic field. One can
transform these equations replacing the value of dSn

dt on
the r.h.s. and bringing it to the l.h.s. By taking into ac-
count the constraint |Sn| = S, one gets

(
1 + ε2S2

) dSn

dt
= Sn × Bn − εSn × Sn × Bn, (A.3)

which, after a proper rescaling of the time variable, is the
(normalized) Landau form [21]. As Iida pointed out [21],
these two equations are, though, as just seen, mathemati-
cally equivalent, not physically equivalent, and arguments
are given to show that (A.3) contains anisotropic damping
while in (A.1) the damping is isotropic. However, numer-
ical integration can be done only once we have solved for
dSn/dt as in (A.3). This last equation is not mathemati-
cally equivalent to (3), i.e.,

dSn

dt
= Sn × Bn − εSn × Sn × F n, (A.4)

mainly because the magnetic field is not present in the sec-
ond term of the latter. Nevertheless, we should expect no
great differences, since as stated above we are interested in
small amplitudes h (∼ 10−3) and damping ε (∼ 10−3). We
can neglect the O(ε2) in the prefactor of equation (A.3)
(which is in turn equivalent to a normalization of the time
variable [21], together with a corresponding change in the
frequency) and also the contribution of O(εh) in the sec-
ond term on the r.h.s. of (A.3), giving (3) or (A.4). From
the relaxation viewpoint, taking the dynamics (A.3) one
easily derives

dH
dt

= −ε
∑

n

[
Sn × Bn

]2

−
∑

n

Sn · dhn(t)
dt

(A.5)

while taking the dynamics (A.4) one has

dH
dt

= − ε
∑

n

[
Sn × F n

]2

−
∑

n

Sn · dhn(t)
dt

− ε
∑

n

(
Sn × F n

) · (Sn × hn(t)
)
. (A.6)

In our computer simulations, with ε = 0.002, it turned
out that the first terms, O(ε), and second terms, O(ωh),



486 The European Physical Journal B

of both equations are the dominant ones, and so the differ-
ence, i.e. two terms of O(εh2) and O(εh), is negligible for
all the values of h and ω we used. In all the cases we found
quickly relaxing oscillations for the signal of energy vs.
time. We also checked the accuracy of our approximation
in our computer simulations, by comparing the flipping
times and vortex trajectories given by equations (A.3, A.4)
[or (3)], and it turned out that the differences arising from
their two different damping terms are negligible, at the
value of damping we have used. In particular, the switch-
ing of polarization remains unchanged. From the numer-
ical viewpoint, the effort in simulating the two equations
is the same. Since the physics is not essentially changed
by using one or the other equation, we have chosen to
use the form (3) in our analysis, because it allows the ar-
gument leading to the presence of effective static fields,
in equations (21–23) of Section 2.2. On the other hand, it
should be stressed here that the theory of magnetic damp-
ing stays at the present time in a phenomenological stage.
New developments like those of Baryakhtar and coworkers
are under experimental test [22].

Appendix B: Connection with a generalized
Thiele equation

In the continuum limit the dynamics of the vortex position
R(t) = (X(t), Y (t), 0) is described by some generalized
Thiele equation up to some given order in time derivatives
of R(t) [25]. For our purposes, here it is enough to use the
second order equation with mass [33],

Mv R̈ − G × Ṙ = − ∂

∂R
U(R), (B.1)

where U(R) is a potential energy (due to possible external
magnetic fields, interactions with other vortices and the
discreteness of the lattice [26,27,33]),Mv has the meaning
of the effective mass of the vortex and G = 2πpqẑ = Gẑ
is the gyrovector for the vortex with polarization p = ±1
and circulation charge q. Equation (B.1) can be obtained
from the Lagrangian

LTh =
Mv

2

(
Ẋ2 + Ẏ 2

)
+
G

2

(
Y Ẋ −XẎ

)
− U(R).

(B.2)

The Hamiltonian which corresponds to the Thiele equa-
tion (B.1) may be obtained by using a Legendre transfor-
mation [37], namely

HTh = Ẋ PX + Ẏ PY − LTh, (B.3)

where

PX =
∂LTh

∂Ẋ
= Mv Ẋ +

G

2
Y

PY =
∂LTh

∂Ẏ
= Mv Ẏ − G

2
X (B.4)

are the components of the canonically conjugated momen-
tum P . Inserting equations (B.4) into equation (B.3) we
obtain a Hamiltonian in the form

HTh =
1

2Mv

(
P 2

X + P 2
Y

)
+

G

2Mv
(PY X − PX Y )

+
G2

4Mv

(
X2 + Y 2

)
+ U(R). (B.5)

In the vicinity of the minimum of the Peierls-Nabarro po-
tential the potential function U(R) may be approximately
presented in the form

U(R) =
1
2
κ |R|2, (B.6)

where the coefficient κ characterizes the steepness of the
Peierls-Nabarro potential. Comparing the Hamiltonian of
equations (B.5, B.6) with the Hamiltonian (33) which de-
scribes the dynamics of the antisymmetric core modes, we
see that they have the same structure if we put

1
Mv

= J λc,
G

2Mv
= JAg,

G2

4Mv
+ κ = J λc, (B.7)

where J is a common scaling parameter. The same pro-
cedure can be given for 3rd order Thiele equations, and a
link can be found between the corresponding Lagrangian
and a reduced model in which one must keep higher orders
in the treatment of the antisymmetric modes.
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